Multidimensional Hadron Attenuation

Gevorg Karyan
(On behalf of the HERMES Collaboration)

A.I. Alikhanyan National Science Laboratory
Yerevan, Armenia
Overview

- Semi-Inclusive Deep-Inelastic Scattering (SIDIS)
- Nuclear Effects
- Experiment
- Results
- Summary
\[Q^2 \equiv -q^2 = (k - k')^2 \]
\[Q^2 \equiv -q^2 = (k - k')^2 \]

\[\nu = E - E' \]
SIDIS

\[Q^2 \equiv -q^2 = (k - k')^2 \]

\[\nu = E - E' \]

\[W^2 = (M_N + q)^2 \]
\[Q^2 \equiv -q^2 = (k - k')^2 \]
\[\nu = E - E' \]
\[W^2 = (M_N + q)^2 \]
\[x_{Bj} = \frac{Q^2}{2 \cdot M_N \cdot \nu} \]
\[Q^2 \equiv -q^2 = (k - k')^2 \]
\[\nu = E - E' \]
\[W^2 = (M_N + q)^2 \]
\[x_{Bj} = \frac{Q^2}{2 \cdot M_N \cdot \nu} \]
\[z_h = \frac{E_h}{\nu} \]
\[Q^2 \equiv -q^2 = (k - k')^2 \]

\[\nu = E - E' \]

\[W^2 = (M_N + q)^2 \]

\[x_{Bj} = \frac{Q^2}{2 \cdot M_N \cdot \nu} \]

\[z_h = \frac{E_h}{\nu} \]

\(p_t \): hadron momentum component transverse to \(\gamma^* \)
\[\sigma^{eN \rightarrow eh} \propto \sum_f e_f^2 \cdot q_f(x_{Bj}, Q^2) \cdot \sigma^{eq \rightarrow eq} \cdot D_f^h(z_h, Q^2) \]

- \(Q^2 \equiv -q^2 = (k - k')^2 \)
- \(\nu = E - E' \)
- \(W^2 = (M_N + q)^2 \)
- \(x_{Bj} = \frac{Q^2}{2 \cdot M_N \cdot \nu} \)
- \(z_h = \frac{E_h}{\nu} \)

\(p_t \): hadron momentum component transverse to \(\gamma^* \)
Nuclear Effects
Nuclear Effects

Partonic Effects
Nuclear Effects

Partonic Effects

- Gluon Radiation
- Parton Rescattering
Nuclear Effects

Partonic Effects

- Gluon Radiation
- Parton Rescattering

Hadronic Effects
Nuclear Effects

Partonic Effects

- Gluon Radiation
- Parton Rescattering

Hadronic Effects

- Colorless Prehadron Interaction
- Hadronic Final State Interaction
Nuclear Effects

\[\gamma^* \rightarrow q \bar{q} \rightarrow q \bar{q} \rightarrow h \]

0 \rightarrow t_p \rightarrow t_p + t_f
Nuclear Effects

Partonic Effects

Hadronic Effects
Nuclear Effects

Partonic Effects Hadronic Effects

Nuclear Attenuation
Nuclear Effects

\[R_A^h(\nu, Q^2, z, p_t^2, \phi) = \frac{N^h(\nu, Q^2, z, p_t^2, \phi)}{N_e(\nu, Q^2)} \frac{A}{D} \]

Partonic Effects

Hadronic Effects

Nuclear Attenuation
Experiment

- **e± beam of 27.6 GeV energy**
- **Nuclear Target** (D, Ne, Kr, Xe)
- **Good Momentum Resolution** ($\Delta p/p < 2\%$)
- **Excellent Particle Identification Capabilities**
- **Experiment**

- **e± beam of 27.6 GeV energy**
- **Nuclear Target** (D, Ne, Kr, Xe)
- **Good Momentum Resolution** (Δp/p < 2%)
- **Excellent Particle Identification Capabilities**
Results

Multidimensional representation of R_A^h
Results

Multidimensional representation of R^h_A

- ν for three z slices
- z for three ν slices
- p_t^2 for three z slices
- z for three p_t^2 slices
Multidimensional representation of R_A^h

- ν for three z slices
- z for three ν slices
- p_t^2 for three z slices
- z for three p_t^2 slices

Eur. Phys. J. A 47, 113
Results

\[R_A \]

<table>
<thead>
<tr>
<th>Ne</th>
<th>Kr</th>
<th>Xe</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z = 0.2-0.4)</td>
<td>(z = 0.4-0.7)</td>
<td>(z > 0.7)</td>
</tr>
</tbody>
</table>

\(p \) \(\pi^+ \) \(K^+ \)

\[v \ [\text{GeV}] \]
Attenuation is larger for heavy nuclei.
Attenuation is larger for heavy nuclei.
R_{K^+} is different from R_{π^+}, R_{π^-} and R_{K^-}.

\[\text{EINN 2015, Paphos, Cyprus} \]
Attenuation is larger for heavy nuclei.
\(R_{\pi^+} \) is different from \(R_{\pi^-} \), \(R_{K^+} \) and \(R_{K^-} \).
Protons behave very differently from the other hadrons.
Results

<table>
<thead>
<tr>
<th>R_A</th>
<th>Ne</th>
<th>Kr</th>
<th>Xe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- π^+
- K^+
- p

$\nu = 4-12$ GeV
$\nu = 12-17$ GeV
$\nu = 17-23.5$ GeV
$R_{A}^{K^{+}}$ is different from $R_{A}^{K^{-}}$ at small values of z.
Results

\[R_{A}^{K^+} \text{ is different from } R_{A}^{K^-} \text{ at small values of } z. \]

Strong dependence of \(R^p \) on heavy nuclei.
Results
Results

Reduction of R_A^h with increasing of z.

EINN 2015, Paphos, Cyprus
Reduction of R_A^{h} with increasing of z.

Strong dependence of R_A^{h} on p_t^2 at small values of z for heavy nuclei.
Results

\[\begin{array}{c|c|c|c}
R_A & Ne & Kr & Xe \\
\hline
0 & \text{\textcolor{red}{\textbullet}} \ z = 0.2-0.4 & \text{\textcolor{red}{\textdownarrow}} \ z = 0.4-0.7 & \text{\textcolor{red}{\textbullet}} \ z > 0.7 \\
2 & & & \\
1.5 & & & \\
1 & & & \\
0.5 & & & \\
1.5 & & & \\
1 & & & \\
0.5 & & & \\
0.5 & & & \\
\end{array} \]

\[p_t^2 \text{[GeV}^2\text{]} \]
The Cronin effect is larger for protons.
The Cronin effect is larger for protons. It is suppressed for mesons in the highest z slice.
Multidimensional kinematic dependencies of R_A^h for $\pi^+, \pi^-, K^+, K^-, p$ and \bar{p} on Ne, Kr and Xe targets.
Summary

Multidimensional kinematic dependencies of R_A^h for π^+, π^-, K^+, K^-, p and \bar{p} on Ne, Kr and Xe targets.

R_A^h is similar for π^+ and π^-.
Summary

- Multidimensional kinematic dependencies of R_A^h for π^+, π^-, K^+, K^-, p and \bar{p} on Ne, Kr and Xe targets.

- R_A^h is similar for π^+ and π^-.

- Negatively charged kaons behave similarly to pions.
Multidimensional kinematic dependencies of R^h_A for π^+, π^-, K^+, K^-, p and \bar{p} on Ne, Kr and Xe targets.

R^h_A is similar for π^+ and π^-.

Negatively charged kaons behave similarly to pions.

ν dependence of R^K_A for positively charged kaons is different from $R^{\pi^+}_A$, $R^{\pi^-}_A$ and $R^{K^-}_A$ in different z slices.
Summary

- Multidimensional kinematic dependencies of R_A^h for π^+, π^-, K^+, K^-, p and \bar{p} on Ne, Kr and Xe targets.

- R_A^h is similar for π^+ and π^-.

- Negatively charged kaons behave similarly to pions.

- ν dependence of $R_A^{K^+}$ for positively charged kaons is different from $R_A^{\pi^+}$, $R_A^{\pi^-}$ and $R_A^{K^-}$ in different z slices.

- R_A^p for protons is very different compared with the other hadrons.